軟體王

xyz

會員登錄
您現在的位置:網站首頁 >> 專業知識教學 >> Udemy線上課程綜合教學 >> 碟片詳情
商品編號:
DUE0315-3
商品名稱:
Udemy線上課程 Python深度學習--徹底研究,從零開始親手學習類神經網路深度學習-親手徹底研究TensorFlow程式設計(含教材) 講師:教學中心 人工智慧大數據教學中心 影音教學 中文發音 繁體中文字幕版(3DVD)
語系版本:
中文發音繁體中文字幕版
運行平台:
官方原版畫質MP4檔,沒有任何平台限制,終身使用
官方網站:
https://www.xyz2009.com.tw
更新日期:
2020-03-26
碟片數量:
3片
銷售價格:
500
瀏覽次數:
4670

轉載TXT文檔】  
您可能感興趣:
Udemy線上課程 Python深度學習--徹底研究,從零開始親手學習類神經網路深度學習-親手徹底研究TensorFlow程式設計(含教材) 講師:教學中心 人工智慧大數據教學中心 影音教學 中文發音 繁體中文字幕版(3DVD)
Udemy線上課程 Python深度學習--徹底研究,從零開始親手學習類神經網路深度學習-親手徹底研究TensorFlow程式設計(含教材) 講師:教學中心 人工智慧大數據教學中心 影音教學 中文發音 繁體中文字幕版(3DVD)


內容說明:
你將會學到的
使用Python作大數據運算基礎
使用Python作機器學習基礎
TensorFlow的基礎
手寫辨識數字
使用Python作數學運算
深入淺出Python程式語言
視覺化Python資料結構
使用Pandas函式庫來建立資料結構
使用Matplotlib畫圖
使用Scipy科學函數庫作線性代數與矩陣科學運算
使用numpy模組建立矩陣
Python直譯器與計算機
瞭解損失函數
手寫辨識範例
瞭解均方差
瞭解交叉熵誤差
瞭解對數y=log(x)
徹底研究Google TensorFlow程式設計
Tensor張量資料型態與計算節點
TensorFlow工作會議Session徹底研究
使用Tensorflow學習數學矩陣行列式與線性代數
使用Tensorflow學習微分梯度求取極值最佳解
使用Tensorflow學習機率統計-機率均勻分佈
使用Tensorflow學習機率常態分佈
使用Tensorflow學習數學複數
使用Tensorflow平行計算解決大數據問題
Tensorflow為大數據先修課程,基本數學機率計算教學
TensorFlow+Keras的基礎
CNN卷積神經網路
RNN遞迴神經網路
手寫辨識數字
學習機器感情
手寫辨識準確度98.59%
顯示手寫訓練圖片
課程內容:
├─01 Python程式設計與資料科學--從零開始親手學習Python程式語言-親手應用實作TensorFlow程式語言
│ 001 Python深度學習.mp4
│ 002 Colab.pdf
│ 002 TensorFlow程式語言簡介.mp4
│ 003 GPUCPU執行影像辨識速度.mp4

├─02 Python 程式設計基礎
│ 004 examples.zip
│ 004 example_1.zip
│ 004 example_2.zip
│ 004 簡介.mp4
│ 005 Python-windows-Deep.pdf
│ 005 Python.pdf
│ 005 下載及安裝Python軟體.mp4
│ 006 在Mac安裝Python軟體實作.mp4
│ 007 Python_Mac_install_detail.pdf
│ 007 Python安裝檢查在Mac.mp4
│ 008 Python安裝檢查實作在Mac.mp4
│ 009 Python_windows_only.pdf
│ 009 在Window 10下載及安裝Python軟體.mp4
│ 010 在Windows 10安裝Python及Anaconda組合包實作.mp4
│ 011 Python安裝檢查在Windows10.mp4
│ 011 Python_windows_install_detail.pdf
│ 012 Python安裝檢查實作在Windows10.mp4
│ 013 Python 網站擷取與資料分析.mp4

├─03 Python直譯器與計算機
│ 014 Python直譯器與計算機.mp4
│ 015 Python 資料型態.mp4
│ 016 布林資料型態.mp4
│ 017 字串資料型態.mp4
│ 018 物件類別.mp4
│ 019 識別名稱.mp4
│ 020 運算式與運算子.mp4
│ 021 運算子結合優先順序.mp4
│ 022 資料型態實作.mp4
│ 023 布林資料型態及浮點數資料型態實作.mp4
│ 024 字串實作.mp4
│ 025 物件類別實作.mp4
│ 026 運算式與運算子實作.mp4
│ 027 運算子結合優先順序實作.mp4
│ 028 數字,字串與變數實作.mp4

├─04 控制結構
│ 029 控制結構.mp4
│ 030 布林值與條件.mp4
│ 031 Python 精通程式語言_控制結構.mp4
│ 032 一個選擇的if敘述.mp4
│ 033 一個選擇的if敘述實作.mp4
│ 034 迴圈結構for.mp4
│ 035 迴圈結構for實作.mp4

├─05 資料結構
│ 036 資料結構.mp4
│ 037 串列堆疊與資料結構實作.mp4
│ 038 數組tuple,集合set和字典.mp4
│ 039 數組tuple,集合set和字典實作.mp4

├─06 函數
│ 040 函數.mp4
│ 041 Python 精通程式語言_函數.mp4
│ 042 函數參數與引數.mp4
│ 043 函數實作.mp4
│ 044 Lambda運算式.mp4
│ 045 費氏函數非遞迴實作.mp4
│ 046 函數參數_name接受實體tuple,函數參數__name接受字典.mp4
│ 047 Lambda運算式實作.mp4
│ 048 套件模組.mp4
│ 049 Python內建字串相關函數實作.mp4
│ 050 套件模組實作.mp4
│ 051 Python內建字串相關函數.mp4

├─07 類別
│ 052 類別.mp4
│ 053 類別實作.mp4
│ 054 建立物件及解構物件.mp4
│ 055 Python 精通程式語言 類別.mp4
│ 056 建構函數__new__().mp4
│ 057 Python物件導向程式語言封裝實作.mp4

├─08 繼承
│ 058 繼承.mp4
│ 059 繼承實作.mp4
│ 060 多重繼承實作.mp4
│ 061 多型.mp4

├─09 異常或錯誤處理
│ 062 異常或錯誤處理.mp4
│ 063 異常或錯誤處理實作.mp4
│ 064 檔案處理.mp4
│ 065 檔案處理實作.mp4

├─10 使用matplotlib畫圖實作
│ 066 使用matplotlib畫圖.mp4
│ 067 使用matplotlib畫圖實作.mp4

├─11 Python 資料結構與畫圖
│ 068 example2.zip
│ 068 Python 資料結構與畫圖簡介.mp4
│ 068 Python-DataStructure.pdf
│ 069 數組tuple和集合set和Scipy科學函數庫.mp4
│ 070 開啟Jupiter notebook.mp4
│ 071 Python 實作簡單線性代數.mp4
│ 072 Tuple數組實作1-Jupyter Notebook.mp4
│ 073 numpy模組建立矩陣.mp4
│ 074 pandas.zip
│ 074 Pandas資料結構.mp4
│ 075 pandas read_csv 實作.mp4
│ 076 Pandas DataFrame 實作.mp4
│ 077 Matplotlib畫圖.mp4

├─12 安裝Pycharm
│ 078 Mac上安裝Pycharm.mp4
│ 078 Python_pycharm_Only.pdf
│ 079 在Mac系統實際安裝PyCharm.mp4
│ 080 Win10上安裝Pycharm.mp4
│ 081 在Windows 10系統實際安裝Pycharm.mp4

├─13 TensorFlow程式語言
│ 082 TensorFlow_mac.pdf
│ 082 TensorFlow程式語言--TensorFlow Mac安裝.mp4
│ 083 使用pip3來安裝TensorFlow.mp4
│ 084 TensorFlow Mac安裝--實作.mp4
│ 085 使用pip3來安裝TensorFlow實作.mp4
│ 086 使用Anaconda來安裝TensorFlow實作.mp4

├─14 TensorFlow程式語言--TensorFlow GPU平行運算-Win 10
│ 087 TensorFlow_GPU.pdf
│ 087 TensorFlow程式語言--TensorFlow GPU平行運算.mp4
│ 088 TensorFlow_GPU.pdf
│ 088 深度學習動態執行檔DLL系統使用者環境路徑設定.mp4
│ 089 安裝TensorFlow-GPU並且執行.mp4
│ 090 安裝並且執行jupyter Notebook-驗證GPU.mp4
│ 091 TensorFlow_mac.pdf
│ 091 使用cpu執行TensorFlow.mp4
│ 092 CUDA軟體安裝設定實作.mp4
│ 093 下載及安裝CUDNN實作.mp4
│ 094 安裝TensorFlow-GPU並且執行實作.mp4
│ 095 使用cpu執行TensorFlow實作.mp4

├─15 TensorFlow
│ 096 TensorFlow.pdf
│ 096 TensorFlow.zip
│ 096 TensorFlow2.zip
│ 096 TensorFlow_Intro.pdf
│ 096 TensorFlow程式語言.mp4
│ 097 TensorFlow的資料型態,級別Ranks和Shape維度的表示.mp4
│ 098 TensorFlow的資料型態.mp4
│ 099 處理張量.mp4
│ 100 TensorFlow計算節點處理張量實作.mp4
│ 101 運算節點.mp4
│ 102 加法乘法運算節點實作.mp4
│ 103 複數是由實數與虛數組成.mp4
│ 104 複數是由實數與虛數組成TensorFlow實作.mp4
│ 105 微分求梯度.mp4
│ 106 常見函數-Tensorflow的計算節點.mp4
│ 107 常見函數實作-Tensorflow的計算節點實作.mp4
│ 108 機率均勻分佈.mp4
│ 109 機率常態分佈.mp4
│ 110 用TensorFlow處理張量圖片.mp4
│ 111 用TensorFlow處理張量圖片實作.mp4
│ 112 TensorFlow的變數.mp4
│ 113 圖形和Sessions.mp4
│ 114 TensorFlow placeholder.mp4
│ 115 執行計算圖.mp4
│ 116 Tensorflow實作.mp4
│ 117 Tensorboard實作.mp4

├─16 TesorFlow程式設計深度學習
│ 118 MNIST手寫辨識演算法.mp4
│ 118 TensorFlow-2.zip
│ 118 TensorFlow-r.pdf
│ 119 TensorFlow 手寫辨識實作.mp4
│ 119 TensorFlow-example.pdf
│ 120 Class GradientDescentOptimizer類別.mp4
│ 121 TensorFlow 手寫辨識實作-Jupyter Notebook.mp4
│ 122 手寫辨識Tensorboard實作.mp4

├─17 TensorFlow 卷積深度學習手寫辨識
│ 123 TensorFlow 卷積深度學習手寫辨識.mp4
│ 123 TensorFlow-cnn.pdf
│ 123 TensorFlow3.zip
│ 124 交叉熵最佳化.mp4
│ 125 TensorFlow 卷積深度學習手寫辨識實作設計.mp4
│ 126 LossFunc.pdf
│ 126 損失函數.mp4
│ 127 LossFunc.pdf
│ 127 損失函數實作.mp4

├─18 TensorFlow+Keras CNN卷積深度學習影像辨識Cifar-10
│ 128 cifar.zip
│ 128 TensorFlow+Keras CNN卷積深度學習Cifar-10圖形辨識.mp4
│ 128 TensorFlow-cnn-cifar10.pdf
│ 129 Keras的核心為模型.mp4
│ 130 建立模型model.fit().mp4
│ 131 TensorFlow+Keras CNN卷積深度學習Cifar-10圖形辨識實作.mp4
│ 132 範例_cifar10_kk.mp4
│ 133 TensorFlow CNN卷積深度學習Cifar圖形辨識.mp4
│ 133 TensorFlow-only-cnn-cifar10.pdf
│ 133 tensorflow_cifar10_code.zip
│ 134 Cifar-10圖片集(train.py).mp4
│ 135 TensorFlow CNN卷積深度學習Cifar圖形辨識實作.mp4
│ 136 啟動Tensorboard實作.mp4

├─19 Python 機器學習-親手TensorFlow實作手寫辨識與強化學習車桿平衡
│ 137 TensorFlow-Conda.pdf
│ 137 TensorFlow-ML.pdf
│ 137 tensorflowExample.zip
│ 137 機率.mp4
│ 138 Conda套件管理.mp4
│ 139 線性迴歸.mp4
│ 140 線性迴歸實作.mp4
│ 141 分類.mp4
│ 142 群聚演算法k-means.mp4
│ 143 群聚演算法k-means實作.mp4
│ 144 KMeans分群.mp4
│ 145 群聚演算法k-means實作2.mp4
│ 146 K-nearest最鄰近分類演算法KNN.mp4
│ 147 手寫辨識MNIST實作.mp4
│ 148 實作KNN演算法使用手寫辨識MNIST實作.mp4

├─20 AutoEncoder自動編碼器
│ 149 Conda套件管理.mp4
│ 149 TensorFlow_Conda.pdf
│ 150 AutoEncoder.pdf
│ 150 autoencoder.zip
│ 150 AutoEncoder自動編碼器-資料降維.mp4
│ 151 自動編碼器用在維度縮減-手寫辨識實作.mp4

├─21 詞向量Word2Vec
│ 152 Word2Vec.pdf
│ 152 word2vec.py
│ 152 Word2Vec詞向量.mp4
│ 153 將字詞轉換成向量最佳化模組SGD學習速率為1.mp4
│ 154 Word2Vec詞向量實作.mp4

├─22 強化學習
│ 155 cartPole_conda.zip
│ 155 TensorFlow_RLCartPole.pdf
│ 155 強化學習--建立Anaconda工作環境 -Mac,執行一般的openAI.mp4
│ 156 強化學習簡介.mp4
│ 157 Q-Function最大化未來報酬.mp4
│ 158 Deep Q 網路使用Keras和TensorFlow.mp4
│ 159 Deep Q 網路使用Keras和TensorFlow實作使用車桿平衡CartPole.mp4
│ 160 OpenAI實作使用車桿平衡.mp4

├─23 Python類神經網路深度學習
│ 161 keras.zip
│ 161 Python-neural-implement.pdf
│ 161 Python類神經網路深度學習.mp4
│ 162 類神經深度學習.mp4
│ 163 mnist手寫辨識.mp4
│ 164 Python-neural-implement2.pdf
│ 164 繪製實際和預測結果的手寫辨識.mp4
│ 165 類神經網路深度學習建置模型實作.mp4

├─24 Python深度學習類神經網路
│ 166 Python-neural.pdf
│ 166 類神經網路.mp4
│ 167 類神經網路深度學習.mp4

├─25 卷積神經網 CNN
│ 168 keras-CNN.pdf
│ 168 卷積神經網 CNN.mp4
│ 169 卷積神經網 CNN-手寫數字辨識實作.mp4

└─26 遞迴神經網 RNN
170 keras-RNN.pdf
170 遞迴神經網 RNN.mp4
171 IMDb影評資料滿意度分析.mp4
172 建立RNN遞迴類神經的模型與實作.mp4
173 LSTM實作.mp4

相關商品:
  • Udemy線上課程 關聯式資料庫設計SQL Server和MySQL資料庫-從零開始親手學習資料庫系統(含教材) 講師:教學中心 人工智慧大數據教學中心 影音教學 中文發音 繁體中文字幕版(2DVD)
  • Udemy線上課程 Python 程式設計教學---從零開始徹底精通Python,親手實作網站擷取與資料分析,Django網站架設(含教材) 講師:教學中心 人工智慧大數據教學中心 影音教學 中文發音 繁體中文字幕版(3DVD)


  • 購物清單